Topics in Data Science

MAT1801 - Winter 2020

Yun William Yu

Sketching Algorithms

- Sub-linear space algorithms
- Family of algorithms for representing big data as small probabilistic data structures called "sketches"
- Fast accurate estimates of cardinality, quantiles, frequency distributions, set membership, majority element, etc.
- Widely used: routers, databases, search, etc.
- Also used in Ondov, et al.'s Mash software for (meta)genome distance approximation.

Count Distinct Problem

- How many distinct items exist in a list? [Flajolet, Martin, Ziv Bar-Yossef]

- Expected minimum is about $\frac{1}{n+1}$, so we need $O(\log (n))$ bits of storage.

(Hyper)LogLog counting [Flajolet, et al]

- Only need to store the order of magnitude to get a good estimate, so can compress hashed values.

- With some correction terms, get errors that are $O\left(\frac{1}{\sqrt{k}}\right)$, where k is number of buckets / iterations.
- But need only $O(\log \log (n))$ space.

HyperLogLog set operations

- Union cardinality
- Cardinality of the union of sets is lossless with HLL
- Determine the largest value for each bucket (iteration)
- Estimate cardinality using the new sketch

3	6	4	1	5	2	2	4									
2	3	3	4	2	3	1	6									
	3	1	0	7	4	6	6	\quad	5	6	4	4	7	4	3	6
:---	:---	:---	:---	:---	:---	:---	:---	:---								

- Intersection cardinality
- Use inclusion-exclusion principle: $|A \cap B|=|A|+|B|-|A \cup B|$
- Only accurate if the union and intersection cardinalities are comparable.
- Complexity grows exponentially with number of sets

Jaccard index [Jaccard, 1902]

- Measures the similarity between two sets by
$J(A, B)=\frac{|A \cap B|}{|A \cup B|}$.

MinHash [Broder, 1997]

$$
\operatorname{Prob}(\min (A)=\min (B))=\frac{|A \cap B|}{|A \cup B|}=J(A, B)
$$

MinHash [Broder, 1997]

MinHash: a worked example

$\|A\|=5 \mathbf{M}$	$\|\boldsymbol{A} \cup \boldsymbol{B}\|$	$\|\boldsymbol{B}\|=10 \mathrm{M}$
0.1548	0.0358	0.0358
0.1422	0.0657	0.0657
0.0559	0.0559	0.0559
0.1287	0.0400	0.0400
0.0811	0.0811	0.0811
0.1208	0.1208	0.2649
0.1153	0.0120	0.0120
Can merge sketches		

Turnstile streams

- Begin with an n length vector x initialized to 0 .
- Stream in a set of updates in the form $\{i, v\}$, where $i \in\{1, \ldots, n\}$ and v. For each update set $x_{i} \leftarrow x_{i}+$ v.
- After streaming, return approximately $f(x)$ for some f. Ideally, for some f, do not need to store all of x. Examples:
-p-norm
-Largest entries (heavy hitters)

AMS Sketch: $F_{2}=|x|_{2}^{2}$

- Let $\Pi=\frac{1}{\sqrt{m}}\left[\begin{array}{ccc} \pm 1 & \cdots & \pm 1 \\ \vdots & \ddots & \vdots \\ \pm 1 & \cdots & \pm 1\end{array}\right] \in \mathbb{R}^{m \times n}$, where each row is chosen pseudorandomly by a 4 -wise independent hash function, so the matrix can be represented in $O(m \log n)$ bits.
- Store $y \leftarrow y+v \Pi_{\mathrm{i}}$ where Π_{i} is the i th column.
- Then $|y|_{2}^{2}$ is an estimator of $|x|_{2}^{2}$.
- Requires $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ space to estimate with $1-\delta$ probability to within ϵ relative error.

Machine Learning

- An algorithm builds a mathematical model based on training data, which it uses to make predictions or decisions on new data.
- We say that model parameters are "learned" from the data.
- We focus here on the supervised classification task, though many of the other topics in data science are sometimes "considered" ML.

ML: linear classifier

- Given an input vector \boldsymbol{x}, the output $y=f(\boldsymbol{w} \cdot \boldsymbol{x})$, where the weights \boldsymbol{w} are learned from the data should match label l.
- Simple example: $f(a)=1$ if $a>t$, for some threshold t, and 0 otherwise.
-Dividing hyperplane, separating classes 0 and 1.

ML: linear classifiers

- Perceptron algorithm
-Technical modification, $\widehat{\boldsymbol{x}}=(\boldsymbol{x}, 1), \widehat{\boldsymbol{w}}=(\boldsymbol{w},-t)$, making separating hyperplanes go through the origin.
-Initialize with $\boldsymbol{w} \leftarrow 0$.
-While there exists $\boldsymbol{x}_{\boldsymbol{i}}$ with $\boldsymbol{x}_{\boldsymbol{i}} l_{i} \cdot \boldsymbol{w} \leq 0$, update $\boldsymbol{w} \leftarrow \boldsymbol{w}+\boldsymbol{x}_{\boldsymbol{i}} l_{i}$, where $l_{i}=\{-1,1\}$ is class label.
- SVM (Support Vector Machine)
-Tries to find the maximum-margin hyperplane, not just any hyperplane (like perceptron).

ML: kernel trick

- Data may not be linearly separable
- But we can often map the data to another space where it is linearly separable.
- E.g. $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$
- Kernel: $K(\boldsymbol{x}, \boldsymbol{y})=\varphi(\boldsymbol{x}) \cdot \varphi(\boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}+|\boldsymbol{x}|^{2}|\boldsymbol{y}|^{2}$
- Careful choice of map allows using kernel function instead of explicit mapping.

ML: deep learning

- Chaining together a bunch of simple nonlinear classifiers empirically improves classification.
- Each node represents a linear combination of parent node values, modified by a nonlinearity (often a ReLU).
- Empirically, using a deep network
 allows us to use a much simpler nonlinearity than more complicated kernel functions.

ML: back-propagation

- The network can be thought of as a function

$$
g(x)=f^{L}\left(W^{L} f^{L-1}\left(W^{L-1} \cdots f^{1}\left(W^{1} x\right) \cdots\right)\right)
$$

where, f^{l} is the nonlinearity, and W^{l} is a weights matrix at layer at layer l.

- We also have a loss/cost function $C\left(y_{i}, g\left(x_{i}\right)\right)$, where y_{i} is the true label of a data point x_{i}.
- We want to use gradient descent to optimize the weights based on the training data.
- Each individual component of the gradient $\partial C / \partial w_{j k}^{l}$ can be computed via the chain rule.
- The back-propagation algorithm avoids duplicate calculations by computing the gradient of each layer from back to front. (i.e. starting from the output layer)

Clustering

- Grouping together data points into "meaningful" groups.
- Also known variously as partitioning, community detection, finding spin glass states, etc.
- Two major versions
-High-dimensional space (not just vector spaces)
-On a graph
- Hard and soft (depending on group assignment)

https://en.wikipedia.org/wiki/K-means clustering

K-means

- Given a set of observations $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}^{d}$, find a partition $S=\left\{S_{1}, \ldots, S_{k}\right\}$ that minimizes squared distances to cluster centers.
- Naïve k-means algorithm
-Initialize meas (e.g. with random choice)
-Iterate until convergence:
- Assign each observation to nearest cluster center
- Calculate new cluster means based on assignment.
- Converges if using Euclidean distance

Hierarchical clustering

- E.g. on a graph, repeatedly cut the graph in half to minimize the cut weight.
- Alternately, iteratively link together pairs of points that are closest together.

https://en.wikipedia.org/wiki/Hierarchical clustering

Scoring functions

- E.g. Girvan-Newman modularity.
-The fraction of edges within clusters minus the expected fraction if edges were distributed at random (under several different random graph models).
- Related to Hamiltonian of spin glass in physics. (i.e. energy of a system where adjacent nodes want the same spin).
- Cluster scoring function independent of number of clusters. Often paired with a hierarchical clustering algorithm to allow choosing the correct level.

(Gaussian) mixture models

- Recall we covered a simple Gaussian mixture model where we assumed our dataset was generated by a combination of different radially symmetric Gaussians.
- In general, let $p(\theta)=\sum_{i=1}^{K} \phi_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$, where ϕ_{i} is a weight associated with each multivariate Gaussian distribution $\mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$.
- How can we estimate $p(\theta)$ from a bunch of samples drawn from it?

Expectation-maximization iterative algorithm

- One commonly used iterative technique to fit parameters θ and missing latent variables Z is the EM-algorithm.
- Algorithm:
-Initialize parameters θ to random values
-Compute the probability of each possible value of Z, given θ (E-step).
-Then, use the just-computed values of Z to compute a better estimate for the parameters θ (M-step)
-Iterate the last two steps until convergence.

Hidden Markov models

- Let X_{n} and Y_{n} be discrete-time stochastic processes and $n \geq 1$. The pair $\left(X_{n}, Y_{n}\right)$ is a hidden markov model if X_{n} is a Markov process and not directed observable and $P\left(Y_{n} \in A \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=$ $P\left(Y_{n} \in A \mid X_{n}=x_{n}\right)$.
- Generalization of a mixture model where the hidden (latent) variables controlling the mixture component are related through a Markov chain instead of independent.
- System being modelled is assumed to be a Markov process with unobservable (hidden) states.
- Can be learned using a variation of the EM algorithm.

Hidden Markov Models

- Inference tasks:
-given parameters of a model, compute probability of a particular output sequence.
-Figure out the distribution over hidden states of the last latent variable at the end of the sequence.

Graphical models

- "Graphical" in the sense of "graph theory"
- A graphical model is a compact representation of a probability distribution over n variables x_{1}, \ldots, x_{n}.
- When using a directed acyclic graph, is known as a Bayesian or belief network.
- When using an undirected graph, is known as a Markov random field

Bayesian or Belief networks

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid \text { parents of } x_{i}\right)
$$

- Each directed edge from y to x represents a conditional probability $p(y \mid x)$.
- A variable without any in-edges has an unconditional probability distribution.
- We observe only certain variables, known as "evidence".

- E.g. A doctor observes an ill patient's symptoms

Blum, Hopcroft, Kannan, 2020

- What disease does the patient have?
- What is the probability of a specific disease?

Markov random field

- Given an undirected graph $G=(V, E)$, a set of random variables $X=\left(X_{v}\right)_{v \in V}$ indexed by V form a Markov random field with respect to G if every variable is conditionally independent of all other variables given its neighbors.

Markov random field examples

- Application: Ising model of spin glasses / community detection.
-Each particle x_{1}, \ldots, x_{n} can have a spin ± 1, and the energy of the system is $\exp \left(c \sum_{i \sim j}\left|x_{i}-x_{j}\right|\right)$.
-Minimizing the energy, subject to specified constraints, is a Markov random field.
- Application: Image reconstruction
-Each pixel is a graph vertex, and we may wish nearby pixels to be similar, with some penalty.

Nonnegative matrix factorization

- Consider the Topic Modelling problem
-Suppose there exist r topics and and n documents, which are a mixture of the topics, determining the probability distribution of words (or phrases) in the document.
-We want to determine both the topics that exist, as well as what topics the documents are mixtures of.

NMF (continued)

- Cannot use SVD for topic modelling because some of the low-rank "topics" will have negative numbers of particular words.
- Hence, we need non-negative matrix factorization
- i.e. decompose a matrix $A=B C$, where all entries are non-negative, and the columns of B and C sum to 1.
- Algorithms for NMF are much more complicated than SVD, but can be done in $O(p o l y(r))$ time, where r is the rank of the matrix.

Random graphs

- Networks of connected nodes show up often
-Electrical grids
-Social networks
-Protein interaction networks
- Real-world networks can be analyzed using things like graph partitioning, or random walks on a particular network. However, we may also be interested in modelling the generation of the network itself.

Random graphs - Erdos-Renyi

- $G(n, p)$ model, where n is the number of vertices, and p is the edge probability.
- Degree is tightly concentrated around $n p$, and in fact binomial with mean $n p$.
- Has sudden phase transition in number of connected components at expected degree $d=1$.
- Degree of separation also has a sharp threshold.
- Has related applications in designing CNF solvers for SAT problems.

Random graphs - Preferential attachment

- Real social networks however do not look like Erdos-Renyi graphs.
- One easy way to see this is to look at the degree distribution.
- Preferential attachment (rich get richer) is one common model that promotes both small-world graphs and the long-tail behavior of real social networks.

Blum, Hopcroft, Kannan, 2020

Random graphs - Conf-model

- But what about networks whose properties we have trouble approximating using a simple model?
- Can we still generate a random network with e.g. the same degree distribution as a real one?
- One way to do this is the configuration random model. Start with an existing network (or set of degree distributions), cut each edge in half, and then randomly reattach edge-halves.
- Used in the null model for Girvan-Newman modularity clustering score.

Wavelets: background (FT)

- Recall the Fourier transform, which gives a basis in terms of sines and cosines for the space of functions.
-Each of the basis functions contains information localized in frequency, but not in space/time.
-Hard to represent discontinuities.

Wavelets: motivation

- Want an easy-to-compute-with orthogonal basis set of functions that have finite support.
- Finite support makes it easier to represent functions that have discontinuities.
- The basis should be composed of simple pieces, like sines and cosines for the Fourier transform.

Wavelets: dilations

- Dilations are mappings that scale all distances by the same factor.
- A dilation equation is a function defined in terms of linear, scaled, shifted versions of itself.

$$
f(x)=f(2 x)+f(2 x-1)
$$

$$
\begin{aligned}
& f(x) \\
& =\frac{1}{2} f(2 x)+f(2 x-1)+\frac{1}{2} f(2 x-2)
\end{aligned}
$$

Wavelets: construction

- Start from a dilation equation, and a solution $\phi(x)$
- We define a 2D set of scaling functions

$$
\phi_{j k}(x)=\phi\left(2^{j} x-k\right)
$$

- For a fixed value of j, the $\phi_{j k}$ span a space V_{j}.
- If $\phi(x)$ satisfies a dilation equation of the form

$$
\phi(x)=\sum_{k=0}^{d-1} c_{k} \phi(2 x-k)
$$

Then each $\phi_{j k}$ is a linear combination of $\phi_{j+1, k}$'s.

- Thus $V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots$
- We can then approximate a function by choosing V_{k}

Wavelets: Haar wavelet

$f(x)=f(2 x)+f(2 x-1)$

$\phi(x)=1$ if $x \in[0,1]$
$\phi_{j k}(x)=\phi\left(2^{j} x-k\right)$

Wavelets: Haar wavelet

- But the set of functions given above is not orthogonal, so reduce set to a linearly ind. set.
- The Haar wavelet is defined by the following basic functions, but with certain members that are linearly dependent removed.
The Haar Wavelet

$$
\psi(x)=\left\{\begin{array}{cl}
1 & 0 \leq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Wavelets: applications

- Applications
-Data compression
-Signal processing
-Power-line communication protocols
- Issues
-Often need to design a wavelet system specific to the problem. i.e. Haar is often not the most natural.
-Smoothness of the basis functions can sometimes be desirable.

Persistent homology

- Method for computing topological features of a space at different spatial resolutions.
- Represent a data cloud as a simplicial complex.
- A distance function specifying links between neighboring points corresponds to a filtration on the simplicial complex.
- We can then ask questions about the simplicial homology at a particular resolution.
- Persistent homologies are the long-lived features.

Persistent homology: math

- Let S be a simplicial complex.
- A simplicial k-chain: $\sum_{i=1}^{N} c_{i} \sigma_{i}$ where $c_{i} \in \mathbb{Z}$ and σ_{i} is an oriented k-simplex (and $-\sigma_{i}$ is the opposite oriented simplex).
- The free abelian group of k-chains on S is written C_{k}, and has basis in 1-1 correspondence with k-simplices.
- The boundary operator $d_{k}: C_{k} \rightarrow C_{k-1}$ is a homomorphism given by $d_{k}(\sigma)=\sum_{i=1}^{k}(-1)^{i}\left(\sigma_{\hat{\imath}}\right)$, where $\sigma_{\hat{l}}$ is the i th face of σ, obtained by deleting its i th vertex.
- Let $Z_{k}=\operatorname{ker} \delta_{k}$, the subgroup of cycles.
- Let $B_{k}=\operatorname{im} \delta_{k+1}$, the subgroup of boundaries.
- The k th homology group is defined as the quotient abelian group $H_{k}(S)=Z_{k} / B_{k}$, which is nonzero when there are k-cycles on S which are not boundaries. (i.e. k-dim holes in the complex)
- The k th Betti number of S is $\beta_{k}=\operatorname{rank}\left(H_{k}(S)\right)$.

Persistent homology: visualization

- Example: connected components $\left(\beta_{0}\right)$, loops $\left(\beta_{1}\right)$, higher-dimensional holes (β_{i}).

Persistent homology: connected components

Persistent homology: loops

Persistent homology: signals

Persistent homology: applications

- Compression of signals and images via storing only persistence diagram (keeping track of critical points in the signal), or maybe even only a subset of the persistence values of highest magnitude.
- Using the persistence diagram as an additional global feature of a dataset, e.g. as input into a machine learning pipeline.
-i.e. are the persistent features of a data cloud of gut microbiome compositions correlated with the healthiness of the individual.

