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Sketching Algorithms

• Sub-linear space algorithms

• Family of algorithms for representing big data as small 
probabilistic data structures called "sketches"

• Fast accurate estimates of cardinality, quantiles, 
frequency distributions, set membership, majority 
element, etc.

• Widely used: routers, databases, search, etc.

• Also used in Ondov, et al.’s Mash software for 
(meta)genome distance approximation.



Count Distinct Problem
• How many distinct items exist in a list? [Flajolet, 

Martin, Ziv Bar-Yossef]
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, so we need 

𝑂(log(𝑛)) bits of storage. 3



(Hyper)LogLog counting [Flajolet, et 
al]
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• Only need to store the order of magnitude to get a 
good estimate, so can compress hashed values.

• With some correction terms, get errors that are 

𝑂
1

𝑘
, where 𝑘 is number of buckets / iterations.

• But need only 𝑂(log log 𝑛 ) space.
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• Union cardinality
• Cardinality of the union of sets is lossless with HLL
• Determine the largest value for each bucket (iteration)
• Estimate cardinality using the new sketch
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• Intersection cardinality
– Use inclusion-exclusion principle: 𝐴 ∩ 𝐵 = 𝐴 + |𝐵| − |𝐴 ∪ 𝐵|
– Only accurate if the union and intersection cardinalities are comparable.
– Complexity grows exponentially with number of sets

https://research.neustar.biz/2012/12/17/hll-intersections-2/

HyperLogLog set operations
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Jaccard index [Jaccard, 1902]
• Measures the 

similarity between 
two sets by

𝐽 𝐴, 𝐵 =
|𝐴∩𝐵|

𝐴∪𝐵
.
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MinHash [Broder, 1997]

𝐴

𝐵

permutations

𝑃𝑟𝑜𝑏 min 𝐴 = min 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 𝐽(𝐴, 𝐵)

Can estimate Jaccard index from empirical probabilities!
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MinHash [Broder, 1997]

𝐴

𝐵

permutations Hash function

𝑃𝑟𝑜𝑏 min 𝐴 = min 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 𝐽(𝐴, 𝐵)

𝑶 𝒍𝒐𝒈 𝒏 𝒃𝒊𝒕𝒔

Can estimate Jaccard index from empirical probabilities!
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Minimum Hash 1 for sets A and B

Minimum Hash 2 for sets A and B

Minimum Hash 3 for sets A and B
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MinHash: a worked example
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Turnstile streams

• Begin with an 𝑛 length vector 𝑥 initialized to 0.

• Stream in a set of updates in the form {𝑖, 𝑣}, where 
𝑖 ∈ {1, … , 𝑛} and 𝑣. For each update set  𝑥𝑖 ← 𝑥𝑖 +
𝑣.

• After streaming, return approximately 𝑓(𝑥) for 
some 𝑓. Ideally, for some 𝑓, do not need to store all 
of 𝑥. Examples:

–𝑝-norm

–Largest entries (heavy hitters)



AMS Sketch: 𝐹2 = 𝑥 2
2

• Let Π =
1

𝑚

±1 ⋯ ±1
⋮ ⋱ ⋮
±1 ⋯ ±1

∈ ℝ𝑚×𝑛, where each 

row is chosen pseudorandomly by a 4-wise 
independent hash function, so the matrix can be 
represented in 𝑂(𝑚 log 𝑛) bits.

• Store 𝑦 ← 𝑦 + 𝑣Πi where Π𝑖 is the 𝑖th column.

• Then 𝑦 2
2 is an estimator of 𝑥 2

2.

• Requires 𝑂
1

𝜖2
log

1

𝛿
space to estimate with 1 − 𝛿

probability to within 𝜖 relative error.



Machine Learning

• An algorithm builds a mathematical model based 
on training data, which it uses to make predictions 
or decisions on new data.

• We say that model parameters are “learned” from 
the data.

• We focus here on the supervised classification task, 
though many of the other topics in data science are 
sometimes “considered” ML.



ML: linear classifier

• Given an input vector 𝒙, the 
output 𝑦 = 𝑓 𝒘 ⋅ 𝒙 , where 
the weights 𝒘 are learned 
from the data should match 
label 𝑙.

• Simple example: 𝑓 𝑎 = 1 if 
𝑎 > 𝑡, for some threshold 𝑡, 
and 0 otherwise.

–Dividing hyperplane, 
separating classes 0 and 1.

https://en.wikipedia.org/wiki/Linear_classifier

https://en.wikipedia.org/wiki/Linear_classifier


ML: linear classifiers

• Perceptron algorithm

–Technical modification, ෝ𝒙 = (𝒙, 1), ෝ𝒘 = (𝒘,−𝑡), 
making separating hyperplanes go through the 
origin.

–Initialize with 𝒘 ← 0.

–While there exists 𝒙𝒊 with 𝒙𝒊𝑙𝑖 ⋅ 𝒘 ≤ 0, update 
𝒘 ← 𝒘+ 𝒙𝒊𝑙𝑖, where 𝑙𝑖 = {−1, 1} is class label.

• SVM (Support Vector Machine)

–Tries to find the maximum-margin hyperplane, not 
just any hyperplane (like perceptron).



ML: kernel trick

• Data may not be linearly separable

• But we can often map the data to another space where it is 
linearly separable.

• E.g. 𝜑 𝑥1, 𝑥2 = 𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2

• Kernel: 𝐾 𝒙, 𝒚 = 𝜑 𝒙 ⋅ 𝜑 𝒚 = 𝒙 ⋅ 𝒚 + 𝒙 2 𝒚 2

• Careful choice of map allows using kernel function instead 
of explicit mapping.

https://en.wikipedia.org/wiki/Kernel_method

https://en.wikipedia.org/wiki/Kernel_method


ML: deep learning

• Chaining together a bunch of 
simple nonlinear classifiers 
empirically improves classification.

• Each node represents a linear 
combination of parent node 
values, modified by a nonlinearity 
(often a ReLU).

• Empirically, using a deep network 
allows us to use a much simpler 
nonlinearity than more 
complicated kernel functions.



ML: back-propagation

• The network can be thought of as a function
𝑔 𝑥 = 𝑓𝐿 𝑊𝐿𝑓𝐿−1 𝑊𝐿−1⋯𝑓1 𝑊1𝑥 ⋯

where, 𝑓𝑙 is the nonlinearity, and 𝑊𝑙 is a weights matrix at 
layer at layer 𝑙.

• We also have a loss/cost function 𝐶 𝑦𝑖 , 𝑔 𝑥𝑖 , where 𝑦𝑖 is 
the true label of a data point 𝑥𝑖.

• We want to use gradient descent to optimize the weights 
based on the training data.

• Each individual component of the gradient 𝜕𝐶/𝜕𝑤𝑗𝑘
𝑙 can be 

computed via the chain rule.

• The back-propagation algorithm avoids duplicate 
calculations by computing the gradient of each layer from 
back to front. (i.e. starting from the output layer)



Clustering

• Grouping together data points 
into “meaningful” groups.

• Also known variously as 
partitioning, community 
detection, finding spin glass 
states, etc.

• Two major versions
–High-dimensional space (not 

just vector spaces)
–On a graph

• Hard and soft (depending on 
group assignment)

https://en.wikipedia.org/wiki/K-means_clustering

https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png

https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png


K-means

• Given a set of observations (𝑥1, … , 𝑥𝑛), 𝑥𝑖 ∈ ℝ𝑑, 
find a partition 𝑺 = 𝑆1, … , 𝑆𝑘 that minimizes 
squared distances to cluster centers.

• Naïve k-means algorithm

–Initialize meas (e.g. with random choice)

–Iterate until convergence:
• Assign each observation to nearest cluster center

• Calculate new cluster means based on assignment.

• Converges if using Euclidean distance



Hierarchical clustering

• E.g. on a graph, repeatedly cut the graph in half to 
minimize the cut weight.

• Alternately, iteratively link together pairs of points 
that are closest together.

https://en.wikipedia.org/wiki/Hierarchical_clustering

https://en.wikipedia.org/wiki/Hierarchical_clustering


Scoring functions

• E.g. Girvan-Newman modularity.
–The fraction of edges within clusters minus the 

expected fraction if edges were distributed at 
random (under several different random graph 
models).

• Related to Hamiltonian of spin glass in physics. (i.e. 
energy of a system where adjacent nodes want the 
same spin).

• Cluster scoring function independent of number of 
clusters. Often paired with a hierarchical clustering 
algorithm to allow choosing the correct level.



(Gaussian) mixture models

• Recall we covered a simple Gaussian mixture model 
where we assumed our dataset was generated by a 
combination of different radially symmetric 
Gaussians.

• In general, let 𝑝 𝜃 = σ𝑖=1
𝐾 𝜙𝑖𝒩 𝜇𝑖 , Σ𝑖 , where 𝜙𝑖

is a weight associated with each multivariate 
Gaussian distribution 𝒩 𝜇𝑖 , Σ𝑖 .

• How can we estimate 𝑝 𝜃 from a bunch of 
samples drawn from it?



Expectation-maximization 
iterative algorithm
• One commonly used iterative technique to fit 

parameters 𝜃 and missing latent variables 𝑍 is the 
EM-algorithm.

• Algorithm:
–Initialize parameters 𝜃 to random values
–Compute the probability of each possible value of 
𝑍, given 𝜃 (E-step).

–Then, use the just-computed values of 𝑍 to 
compute a better estimate for the parameters 𝜃
(M-step)

–Iterate the last two steps until convergence.



Hidden Markov models

• Let 𝑋𝑛 and 𝑌𝑛 be discrete-time stochastic processes  
and 𝑛 ≥ 1. The pair (𝑋𝑛, 𝑌𝑛) is a hidden markov model 
if 𝑋𝑛 is a Markov process and not directed observable 
and 𝑃 𝑌𝑛 ∈ 𝐴 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 =
𝑃 𝑌𝑛 ∈ 𝐴 𝑋𝑛 = 𝑥𝑛 .

• Generalization of a mixture model where the hidden 
(latent) variables controlling the mixture component 
are related through a Markov chain instead of 
independent.

• System being modelled is assumed to be a Markov 
process with unobservable (hidden) states.

• Can be learned using a variation of the EM algorithm.



Hidden Markov Models

• Inference tasks:

–given parameters of a model, compute probability 
of a particular output sequence.

–Figure out the distribution over hidden states of 
the last latent variable at the end of the sequence.

https://en.wikipedia.org/wiki/Hidden_Markov_modelBlum, Hopcroft, Kannan, 2020

https://en.wikipedia.org/wiki/Hidden_Markov_model


Graphical models

• “Graphical” in the sense of “graph theory”

• A graphical model is a compact representation of a 
probability distribution over 𝑛 variables 𝑥1, … , 𝑥𝑛.

• When using a directed acyclic graph, is known as a 
Bayesian or belief network.

• When using an undirected graph, is known as a 
Markov random field 



Bayesian or Belief networks

𝑝 𝑥1, … , 𝑥𝑛 = Π𝑖=1
𝑛 𝑝 𝑥𝑖 parents of 𝑥𝑖

• Each directed edge from 𝑦 to 𝑥 represents a 
conditional probability 𝑝 𝑦 𝑥 .

• A variable without any in-edges has an 
unconditional probability distribution.

• We observe only certain variables, known as 
“evidence”.

• E.g. A doctor observes an ill patient’s 
symptoms

– What disease does the patient have?

– What is the probability of a specific disease?

Blum, Hopcroft, Kannan, 2020



Markov random field

• Given an undirected graph 𝐺 = 𝑉, 𝐸 , a set of 
random variables 𝑋 = 𝑋𝑣 𝑣∈𝑉 indexed by 𝑉 form a 
Markov random field with respect to 𝐺 if every 
variable is conditionally independent of all other 
variables given its neighbors.

https://en.wikipedia.org/wiki/Markov_random_field

https://en.wikipedia.org/wiki/Markov_random_field


Markov random field examples

• Application: Ising model of spin glasses / 
community detection.

–Each particle 𝑥1, … , 𝑥𝑛 can have a spin ±1, and the 
energy of the system is exp 𝑐 σ𝑖~𝑗 𝑥𝑖 − 𝑥𝑗 .

–Minimizing the energy, subject to specified 
constraints, is a Markov random field.

• Application: Image reconstruction

–Each pixel is a graph vertex, and we may wish 
nearby pixels to be similar, with some penalty.



Nonnegative matrix factorization

• Consider the Topic Modelling problem

–Suppose there exist 𝑟 topics and and 𝑛 documents, which 
are a mixture of the topics, determining the probability 
distribution of words (or phrases) in the document.

–We want to determine both the topics that exist, as well 
as what topics the documents are mixtures of.



NMF (continued)

• Cannot use SVD for topic modelling because some 
of the low-rank “topics” will have negative numbers 
of particular words.

• Hence, we need non-negative matrix factorization

• i.e. decompose a matrix 𝐴 = 𝐵𝐶, where all entries 
are non-negative, and the columns of 𝐵 and 𝐶 sum 
to 1.

• Algorithms for NMF are much more complicated 
than SVD, but can be done in 𝑂 𝑝𝑜𝑙𝑦 𝑟 time, 
where 𝑟 is the rank of the matrix.



Random graphs

• Networks of connected nodes show up often

–Electrical grids

–Social networks

–Protein interaction networks

• Real-world networks can be analyzed using things 
like graph partitioning, or random walks on a 
particular network. However, we may also be 
interested in modelling the generation of the 
network itself.



Random graphs – Erdos-Renyi

• 𝐺 𝑛, 𝑝 model, where 𝑛 is the number of vertices, 
and 𝑝 is the edge probability.

• Degree is tightly concentrated around 𝑛𝑝, and in 
fact binomial with mean 𝑛𝑝.

• Has sudden phase transition in number of 
connected components at expected degree 𝑑 = 1.

• Degree of separation also has a sharp threshold.

• Has related applications in designing CNF solvers 
for SAT problems.



Random graphs – Preferential 
attachment
• Real social networks however do 

not look like Erdos-Renyi graphs.

• One easy way to see this is to 
look at the degree distribution.

• Preferential attachment (rich get 
richer) is one common model 
that promotes both small-world 
graphs and the long-tail behavior 
of real social networks.

Newman, PNAS, 2004

Blum, Hopcroft, Kannan, 2020



Random graphs – Conf-model

• But what about networks whose properties we 
have trouble approximating using a simple model?

• Can we still generate a random network with e.g. 
the same degree distribution as a real one?

• One way to do this is the configuration random 
model. Start with an existing network (or set of 
degree distributions), cut each edge in half, and 
then randomly reattach edge-halves.

• Used in the null model for Girvan-Newman 
modularity clustering score.



Wavelets: background (FT)

• Recall the Fourier transform, which gives a basis in 
terms of sines and cosines for the space of 
functions.

–Each of the basis functions contains information 
localized in frequency, but not in space/time.

–Hard to represent discontinuities.

https://en.wikipedia.org/wiki/Fourier_transform

https://en.wikipedia.org/wiki/Fourier_transform


Wavelets: motivation

• Want an easy-to-compute-with orthogonal basis 
set of functions that have finite support.

• Finite support makes it easier to represent 
functions that have discontinuities.

• The basis should be composed of simple pieces, like 
sines and cosines for the Fourier transform.



Wavelets: dilations

• Dilations are mappings that scale all 
distances by the same factor.

• A dilation equation is a function 
defined in terms of linear, scaled, 
shifted versions of itself.

𝑓 𝑥 = 𝑓 2𝑥 + 𝑓(2𝑥 − 1)

𝑓 𝑥

=
1

2
𝑓 2𝑥 + 𝑓 2𝑥 − 1 +

1

2
𝑓 2𝑥 − 2

Blum, Hopcroft, Kannan, 2020



Wavelets: construction

• Start from a dilation equation, and a solution 𝜙(𝑥)
• We define a 2D set of scaling functions 

𝜙𝑗𝑘 𝑥 = 𝜙(2𝑗𝑥 − 𝑘)

• For a fixed value of 𝑗, the 𝜙𝑗𝑘 span a space 𝑉𝑗.

• If 𝜙(𝑥) satisfies a dilation equation of the form

𝜙 𝑥 = 

𝑘=0

𝑑−1

𝑐𝑘𝜙 2𝑥 − 𝑘

Then each 𝜙𝑗𝑘 is a linear combination of 𝜙𝑗+1,𝑘’s.

• Thus 𝑉0 ⊆ 𝑉1 ⊆ 𝑉2 ⊆ ⋯
• We can then approximate a function by choosing 𝑉𝑘



Wavelets: Haar wavelet

𝑓 𝑥 = 𝑓 2𝑥 + 𝑓(2𝑥 − 1)

𝜙 𝑥 = 1 if 𝑥 ∈ [0,1]

𝜙𝑗𝑘 𝑥 = 𝜙(2𝑗𝑥 − 𝑘)

Blum, Hopcroft, Kannan, 2020



Wavelets: Haar wavelet

• But the set of functions given above is not orthogonal, so 
reduce set to a linearly ind. set.

• The Haar wavelet is defined by the following basic functions, 
but with certain members that are linearly dependent 
removed.

Blum, Hopcroft, Kannan, 2020



Wavelets: applications

• Applications

–Data compression

–Signal processing

–Power-line communication protocols

• Issues

–Often need to design a wavelet system specific to 
the problem. i.e. Haar is often not the most 
natural.

–Smoothness of the basis functions can sometimes 
be desirable.



Persistent homology

• Method for computing topological features of a 
space at different spatial resolutions.

• Represent a data cloud as a simplicial complex.

• A distance function specifying links between 
neighboring points corresponds to a filtration on 
the simplicial complex.

• We can then ask questions about the simplicial 
homology at a particular resolution.

• Persistent homologies are the long-lived features.



Persistent homology: math

• Let 𝑆 be a simplicial complex.

• A simplicial k-chain: σ𝑖=1
𝑁 𝑐𝑖 𝜎𝑖 where 𝑐𝑖 ∈ ℤ and 𝜎𝑖 is an oriented 

𝑘-simplex (and −𝜎𝑖 is the opposite oriented simplex).

• The free abelian group of 𝑘-chains on 𝑆 is written 𝐶𝑘, and has 
basis in 1-1 correspondence with 𝑘-simplices.

• The boundary operator 𝑑𝑘: 𝐶𝑘 → 𝐶𝑘−1 is a homomorphism given 
by 𝑑𝑘 𝜎 = σ𝑖=1

𝑘 −1 𝑖(𝜎 Ƹ𝑖), where 𝜎 Ƹ𝑖 is the 𝑖th face of 𝜎, 
obtained by deleting its 𝑖th vertex.

• Let 𝑍𝑘 = ker 𝛿𝑘, the subgroup of cycles.

• Let 𝐵𝑘 = im 𝛿𝑘+1, the subgroup of boundaries.

• The 𝑘th homology group is defined as the quotient abelian group 
𝐻𝑘 𝑆 = 𝑍𝑘/𝐵𝑘, which is nonzero when there are 𝑘-cycles on 𝑆
which are not boundaries. (i.e. 𝑘-dim holes in the complex)

• The 𝑘th Betti number of 𝑆 is 𝛽𝑘 = rank 𝐻𝑘 𝑆 .



Persistent homology: visualization

• Example: connected components (𝛽0), loops (𝛽1), 
higher-dimensional holes (𝛽𝑖).

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: connected 
components

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: loops

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: signals

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: applications

• Compression of signals and images via storing only 
persistence diagram (keeping track of critical points 
in the signal), or maybe even only a subset of the 
persistence values of highest magnitude.

• Using the persistence diagram as an additional 
global feature of a dataset, e.g. as input into a 
machine learning pipeline.

–i.e. are the persistent features of a data cloud of 
gut microbiome compositions correlated with the 
healthiness of the individual.


